githubEdit

实用篇day05-分布式搜索引擎01

1. 初识elasticsearch

1.1 了解ES

1.1.1 elasticsearch的作用

elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容

例如:

  • 在GitHub搜索代码

    image-20210720193623245
  • 在电商网站搜索商品

    image-20210720193633483
  • 在百度搜索答案

    image-20210720193641907
  • 在打车软件搜索附近的车

    image-20210720193648044

1.1.2 ELK技术栈

elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:

image-20210720194008781

而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。

image-20210720194230265

1.1.3 elasticsearch和lucene

elasticsearch底层是基于lucene来实现的。

Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址:https://lucene.apache.org/ 。

image-20210720194547780

elasticsearch的发展历史:

  • 2004年Shay Banon基于Lucene开发了Compass

  • 2010年Shay Banon 重写了Compass,取名为Elasticsearch。

image-20210720195001221

1.1.4 为什么不是其他搜索技术?

目前比较知名的搜索引擎技术排名:

image-20210720195142535

虽然在早期,Apache Solr是最主要的搜索引擎技术,但随着发展elasticsearch已经渐渐超越了Solr,独占鳌头:

image-20210720195306484

1.1.5 总结

什么是elasticsearch?

  • 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能

什么是elastic stack(ELK)?

  • 是以elasticsearch为核心的技术栈,包括beats、Logstash、kibana、elasticsearch

什么是Lucene?

  • 是Apache的开源搜索引擎类库,提供了搜索引擎的核心API

1.2 倒排索引

倒排索引的概念是基于MySQL这样的正向索引而言的。

1.2.1 正向索引

那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:

image-20210720195531539

如果是根据id查询,那么直接走索引,查询速度非常快。

但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:

1)用户搜索数据,条件是title符合"%手机%"

2)逐行获取数据,比如id为1的数据

3)判断数据中的title是否符合用户搜索条件

4)如果符合则放入结果集,不符合则丢弃。回到步骤1

逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。

1.2.2 倒排索引

倒排索引中有两个非常重要的概念:

  • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息

  • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

创建倒排索引是对正向索引的一种特殊处理,流程如下:

  • 将每一个文档的数据利用算法分词,得到一个个词条

  • 创建表,每行数据包括词条、词条所在文档id、位置等信息

  • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

如图:

image-20210720200457207

倒排索引的搜索流程如下(以搜索"华为手机"为例):

1)用户输入条件"华为手机"进行搜索。

2)对用户输入内容分词,得到词条:华为手机

3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。

4)拿着文档id到正向索引中查找具体文档。

如图:

image-20210720201115192

虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。

1.2.3 正向和倒排

那么为什么一个叫做正向索引,一个叫做倒排索引呢?

  • 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程

  • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程

是不是恰好反过来了?

那么两者方式的优缺点是什么呢?

正向索引

  • 优点:

    • 可以给多个字段创建索引

    • 根据索引字段搜索、排序速度非常快

  • 缺点:

    • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。

倒排索引

  • 优点:

    • 根据词条搜索、模糊搜索时,速度非常快

  • 缺点:

    • 只能给词条创建索引,而不是字段

    • 无法根据字段做排序

1.3 es的一些概念

elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。

1.3.1 文档和字段

elasticsearch是面向文档(Document) 存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:

image-20210720202707797

而Json文档中往往包含很多的字段(Field) ,类似于数据库中的列。

1.3.2 索引和映射

索引(Index) ,就是相同类型的文档的集合。

例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;

  • 所有商品的文档,可以组织在一起,称为商品的索引;

  • 所有订单的文档,可以组织在一起,称为订单的索引;

image-20210720203022172

因此,我们可以把索引当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping) ,是索引中文档的字段约束信息,类似表的结构约束。

1.3.3 mysql与elasticsearch

我们统一的把mysql与elasticsearch的概念做一下对比:

MySQL

Elasticsearch

说明

Table

Index

索引(index),就是文档的集合,类似数据库的表(table)

Row

Document

文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式

Column

Field

字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)

Schema

Mapping

Mapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)

SQL

DSL

DSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD

是不是说,我们学习了elasticsearch就不再需要mysql了呢?

并不是如此,两者各自有自己的擅长支出:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性

  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现

  • 对查询性能要求较高的搜索需求,使用elasticsearch实现

  • 两者再基于某种方式,实现数据的同步,保证一致性

image-20210720203534945

1.4 安装es、kibana

1.4.1 安装

参考课前资料:

image-20210720203805350

1.4.2 分词器

参考课前资料:

image-20210720203805350

1.4.3 总结

分词器的作用是什么?

  • 创建倒排索引时对文档分词

  • 用户搜索时,对输入的内容分词

IK分词器有几种模式?

  • ik_smart:智能切分,粗粒度

  • ik_max_word:最细切分,细粒度

IK分词器如何拓展词条?如何停用词条?

  • 利用config目录的IkAnalyzer.cfg.xml文件添加拓展词典和停用词典

  • 在词典中添加拓展词条或者停用词条

2. 索引库操作

索引库就类似数据库表,mapping映射就类似表的结构。

我们要向es中存储数据,必须先创建“库”和“表”。

2.1 mapping映射属性

mapping是对索引库中文档的约束,常见的mapping属性包括:

  • type:字段数据类型,常见的简单类型有:

    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)

    • 数值:long、integer、short、byte、double、float、

    • 布尔:boolean

    • 日期:date

    • 对象:object

  • index:是否创建索引,默认为true

  • analyzer:使用哪种分词器

  • properties:该字段的子字段

例如下面的json文档:

对应的每个字段映射(mapping):

  • age:类型为 integer;参与搜索,因此需要index为true;无需分词器

  • weight:类型为float;参与搜索,因此需要index为true;无需分词器

  • isMarried:类型为boolean;参与搜索,因此需要index为true;无需分词器

  • info:类型为字符串,需要分词,因此是text;参与搜索,因此需要index为true;分词器可以用ik_smart

  • email:类型为字符串,但是不需要分词,因此是keyword;不参与搜索,因此需要index为false;无需分词器

  • score:虽然是数组,但是我们只看元素的类型,类型为float;参与搜索,因此需要index为true;无需分词器

  • name:类型为object,需要定义多个子属性

    • name.firstName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器

    • name.lastName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器

2.2 索引库的CRUD

这里我们统一使用Kibana编写DSL的方式来演示。

2.2.1 创建索引库和映射

基本语法:

  • 请求方式:PUT

  • 请求路径:/索引库名,可以自定义

  • 请求参数:mapping映射

格式:

示例:

2.2.2 查询索引库

基本语法

  • 请求方式:GET

  • 请求路径:/索引库名

  • 请求参数:无

格式

示例

image-20210720211019329

2.2.3 修改索引库

倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping

虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。

语法说明

示例

image-20210720212357390

2.2.4 删除索引库

语法:

  • 请求方式:DELETE

  • 请求路径:/索引库名

  • 请求参数:无

格式:

在kibana中测试:

image-20210720212123420

2.2.5 总结

索引库操作有哪些?

  • 创建索引库:PUT /索引库名

  • 查询索引库:GET /索引库名

  • 删除索引库:DELETE /索引库名

  • 添加字段:PUT /索引库名/_mapping

3. 文档操作

3.1 新增文档

语法:

示例:

响应:

image-20210720212933362

3.2 查询文档

根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。

语法:

通过kibana查看数据:

查看结果:

image-20210720213345003

3.3 删除文档

删除使用DELETE请求,同样,需要根据id进行删除:

语法:

示例:

结果:

image-20210720213634918

3.4 修改文档

修改有两种方式:

  • 全量修改:直接覆盖原来的文档

  • 增量修改:修改文档中的部分字段

3.4.1 全量修改

全量修改是覆盖原来的文档,其本质是:

  • 根据指定的id删除文档

  • 新增一个相同id的文档

注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。

语法:

示例:

3.4.2 增量修改

增量修改是只修改指定id匹配的文档中的部分字段。

语法:

示例:

3.5 总结

文档操作有哪些?

  • 创建文档:POST /{索引库名}/_doc/文档id { json文档 }

  • 查询文档:GET /{索引库名}/_doc/文档id

  • 删除文档:DELETE /{索引库名}/_doc/文档id

  • 修改文档:

    • 全量修改:PUT /{索引库名}/_doc/文档id { json文档 }

    • 增量修改:POST /{索引库名}/_update/文档id { "doc": {字段}}

4. RestAPI

ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。官方文档地址:https://www.elastic.co/guide/en/elasticsearch/client/index.html

其中的Java Rest Client又包括两种:

  • Java Low Level Rest Client

  • Java High Level Rest Client

image-20210720214555863

我们学习的是Java HighLevel Rest Client客户端API

4.1 导入Demo工程

4.1.1 导入数据

首先导入课前资料提供的数据库数据:

image-20210720220400297

数据结构如下:

4.1.2 导入项目

然后导入课前资料提供的项目:

image-20210720220503411

项目结构如图:

image-20210720220647541

4.1.3 mapping映射分析

创建索引库,最关键的是mapping映射,而mapping映射要考虑的信息包括:

  • 字段名

  • 字段数据类型

  • 是否参与搜索

  • 是否需要分词

  • 如果分词,分词器是什么?

其中:

  • 字段名、字段数据类型,可以参考数据表结构的名称和类型

  • 是否参与搜索要分析业务来判断,例如图片地址,就无需参与搜索

  • 是否分词呢要看内容,内容如果是一个整体就无需分词,反之则要分词

  • 分词器,我们可以统一使用ik_max_word

来看下酒店数据的索引库结构:

几个特殊字段说明:

  • location:地理坐标,里面包含精度、纬度

  • all:一个组合字段,其目的是将多字段的值 利用copy_to合并,提供给用户搜索

地理坐标说明:

image-20210720222110126

copy_to说明:

image-20210720222221516

4.1.4 初始化RestClient

在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。

分为三步:

1)引入es的RestHighLevelClient依赖:

2)因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本:

3)初始化RestHighLevelClient:

初始化的代码如下:

这里为了单元测试方便,我们创建一个测试类HotelIndexTest,然后将初始化的代码编写在@BeforeEach方法中:

4.2 创建索引库

4.2.1 代码解读

创建索引库的API如下:

image-20210720223049408

代码分为三步:

  • 1)创建Request对象。因为是创建索引库的操作,因此Request是CreateIndexRequest。

  • 2)添加请求参数,其实就是DSL的JSON参数部分。因为json字符串很长,这里是定义了静态字符串常量MAPPING_TEMPLATE,让代码看起来更加优雅。

  • 3)发送请求,client.indices()方法的返回值是IndicesClient类型,封装了所有与索引库操作有关的方法。

4.2.2 完整示例

在hotel-demo的cn.itcast.hotel.constants包下,创建一个类,定义mapping映射的JSON字符串常量:

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现创建索引:

4.3 删除索引库

删除索引库的DSL语句非常简单:

与创建索引库相比:

  • 请求方式从PUT变为DELTE

  • 请求路径不变

  • 无请求参数

所以代码的差异,注意体现在Request对象上。依然是三步走:

  • 1)创建Request对象。这次是DeleteIndexRequest对象

  • 2)准备参数。这里是无参

  • 3)发送请求。改用delete方法

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现删除索引:

4.4 判断索引库是否存在

判断索引库是否存在,本质就是查询,对应的DSL是:

因此与删除的Java代码流程是类似的。依然是三步走:

  • 1)创建Request对象。这次是GetIndexRequest对象

  • 2)准备参数。这里是无参

  • 3)发送请求。改用exists方法

4.5 总结

JavaRestClient操作elasticsearch的流程基本类似。核心是client.indices()方法来获取索引库的操作对象。

索引库操作的基本步骤:

  • 初始化RestHighLevelClient

  • 创建XxxIndexRequest。XXX是Create、Get、Delete

  • 准备DSL( Create时需要,其它是无参)

  • 发送请求。调用RestHighLevelClient#indices().xxx()方法,xxx是create、exists、delete

5. RestClient操作文档

为了与索引库操作分离,我们再次参加一个测试类,做两件事情:

  • 初始化RestHighLevelClient

  • 我们的酒店数据在数据库,需要利用IHotelService去查询,所以注入这个接口

5.1 新增文档

我们要将数据库的酒店数据查询出来,写入elasticsearch中。

5.1.1 索引库实体类

数据库查询后的结果是一个Hotel类型的对象。结构如下:

与我们的索引库结构存在差异:

  • longitude和latitude需要合并为location

因此,我们需要定义一个新的类型,与索引库结构吻合:

5.1.2 语法说明

新增文档的DSL语句如下:

对应的java代码如图:

image-20210720230027240

可以看到与创建索引库类似,同样是三步走:

  • 1)创建Request对象

  • 2)准备请求参数,也就是DSL中的JSON文档

  • 3)发送请求

变化的地方在于,这里直接使用client.xxx()的API,不再需要client.indices()了。

5.1.3 完整代码

我们导入酒店数据,基本流程一致,但是需要考虑几点变化:

  • 酒店数据来自于数据库,我们需要先查询出来,得到hotel对象

  • hotel对象需要转为HotelDoc对象

  • HotelDoc需要序列化为json格式

因此,代码整体步骤如下:

  • 1)根据id查询酒店数据Hotel

  • 2)将Hotel封装为HotelDoc

  • 3)将HotelDoc序列化为JSON

  • 4)创建IndexRequest,指定索引库名和id

  • 5)准备请求参数,也就是JSON文档

  • 6)发送请求

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

5.2 查询文档

5.2.1 语法说明

查询的DSL语句如下:

非常简单,因此代码大概分两步:

  • 准备Request对象

  • 发送请求

不过查询的目的是得到结果,解析为HotelDoc,因此难点是结果的解析。完整代码如下:

image-20210720230811674

可以看到,结果是一个JSON,其中文档放在一个_source属性中,因此解析就是拿到_source,反序列化为Java对象即可。

与之前类似,也是三步走:

  • 1)准备Request对象。这次是查询,所以是GetRequest

  • 2)发送请求,得到结果。因为是查询,这里调用client.get()方法

  • 3)解析结果,就是对JSON做反序列化

5.2.2 完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

5.3 删除文档

删除的DSL为是这样的:

与查询相比,仅仅是请求方式从DELETE变成GET,可以想象Java代码应该依然是三步走:

  • 1)准备Request对象,因为是删除,这次是DeleteRequest对象。要指定索引库名和id

  • 2)准备参数,无参

  • 3)发送请求。因为是删除,所以是client.delete()方法

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

5.4 修改文档

5.4.1 语法说明

修改我们讲过两种方式:

  • 全量修改:本质是先根据id删除,再新增

  • 增量修改:修改文档中的指定字段值

在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID:

  • 如果新增时,ID已经存在,则修改

  • 如果新增时,ID不存在,则新增

这里不再赘述,我们主要关注增量修改。

代码示例如图:

image-20210720231040875

与之前类似,也是三步走:

  • 1)准备Request对象。这次是修改,所以是UpdateRequest

  • 2)准备参数。也就是JSON文档,里面包含要修改的字段

  • 3)更新文档。这里调用client.update()方法

5.4.2 完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

5.5 批量导入文档

案例需求:利用BulkRequest批量将数据库数据导入到索引库中。

步骤如下:

  • 利用mybatis-plus查询酒店数据

  • 将查询到的酒店数据(Hotel)转换为文档类型数据(HotelDoc)

  • 利用JavaRestClient中的BulkRequest批处理,实现批量新增文档

5.5.1 语法说明

批量处理BulkRequest,其本质就是将多个普通的CRUD请求组合在一起发送。

其中提供了一个add方法,用来添加其他请求:

image-20210720232105943

可以看到,能添加的请求包括:

  • IndexRequest,也就是新增

  • UpdateRequest,也就是修改

  • DeleteRequest,也就是删除

因此Bulk中添加了多个IndexRequest,就是批量新增功能了。示例:

image-20210720232431383

其实还是三步走:

  • 1)创建Request对象。这里是BulkRequest

  • 2)准备参数。批处理的参数,就是其它Request对象,这里就是多个IndexRequest

  • 3)发起请求。这里是批处理,调用的方法为client.bulk()方法

我们在导入酒店数据时,将上述代码改造成for循环处理即可。

5.5.2 完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

5.6 小结

文档操作的基本步骤:

  • 初始化RestHighLevelClient

  • 创建XxxRequest。XXX是Index、Get、Update、Delete、Bulk

  • 准备参数(Index、Update、Bulk时需要)

  • 发送请求。调用RestHighLevelClient#.xxx()方法,xxx是index、get、update、delete、bulk

  • 解析结果(Get时需要)

Last updated

Was this helpful?